Mussel-inspired Fluoro-Polydopamine Functionalization of Titanium Dioxide Nanowires for Polymer Nanocomposites with Significantly Enhanced Energy Storage Capability

نویسندگان

  • Guanyao Wang
  • Xingyi Huang
  • Pingkai Jiang
چکیده

High-dielectric-constant polymer nanocomposites are demonstrated to show great promise as energy storage materials. However, the large electrical mismatch and incompatibility between nanofillers and polymer matrix usually give rise to significantly reduced breakdown strength and weak energy storage capability. Therefore, rational selection and elaborate functionalization of nanofillers to optimize the performance of polymer nanocomposites are vital. Herein, inspired by adhesive proteins in mussels, a facile modification by fluoro-polydopamine is employed to reinforce the compatibility of TiO2 nanowires in the fluoropolymer matrix. The loading of 2.5 vol % f-DOPA@TiO2 NWs leads to an ultrahigh discharged energy density of 11.48 J cm-3 at 530 MV m-1, more than three times of commercial biaxial-oriented polypropylene (BOPP, 3.56 J cm-3 at 600 MV m-1). A gratifying high energy density of 9.12 J cm-3 has also been obtained with nanofiller loading as high as 15 vol % at 360 MV m-1, which is nearly double to that of pure P(VDF-HFP) (4.76 J cm-3 at 360 MV m-1). This splendid energy storage capability seems to rival or exceed most of previously reported nano-TiO2 based nanocomposites. The methods presented here provide deep insights into the design of polymer nanocomposites for energy storage applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array

Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm-1, which may bring more challenges relating to the failure probability. Here, a simple two-step meth...

متن کامل

Remarkable Anti-Fouling Performance of TiO2-Modified TFC Membranes with Mussel-Inspired Polydopamine Binding

It has been proven that a versatile bio-glue, polydopamine, can firmly bind TiO2 (titanium dioxide) nanoparticles on thin film composite (TFC) membranes. In this work, the anti-fouling behaviour of this novel polydopamine-TiO2-modified membrane is evaluated, based on the static bovine serum albumin (BSA) surface adhesion of the membranes and the relative flux decline. The results show that the ...

متن کامل

A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites.

A facile and universal approach to prepare graphene-based nanocomposites by in situ nucleation and growth of diverse noble metals, metal oxides and semiconducting nanoparticles on the surface of RGO is proposed.

متن کامل

Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold.

Flexible nanodielectric materials with high dielectric constant and low dielectric loss have huge potential applications in the modern electronic and electric industry. Graphene sheets (GS) and reduced-graphene oxide (RGO) are promising fillers for preparing flexible polymer-based nanodielectric materials because of their unique two-dimensional structure and excellent electrical and mechanical ...

متن کامل

Mussel-inspired Polydopamine-treated Copper Foil as a Current Collector for High-performance Silicon Anodes

A new Cu current collector was prepared by introducing a mussel-inspired polydopamine coating onto a Cu foil surface to improve the electrochemical performance of a Si electrode. The polydopamine coating covalently bonded the polymeric binder (with hydroxyl functional groups) via a condensation reaction. The coating improved the adhesion strength between the Si composite electrode and the Cu cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017